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Abstract—This paper presents a 3-D integrated disposable
“electronic microplate” (e-microplate) platform that allows the
reuse of CMOS biosensor, thereby significantly reducing cost
and increasing throughput compared to nondisposable biosensing
systems. The e-microplate utilizes mechanically flexible intercon-
nects and through-silicon-vias to electrically connect the cells
cultured on the top (sensing electrode side) of the e-microplate
to the electrodes on the CMOS biosensor while maintaining a
physical separation between the aforementioned substrate tiers.
Electrical measurements performed show that the incorporation
of the e-microplate does not degrade the sensing amplifier’s
gain, 3-dB bandwidth, or the input referred noise; this ensures
a high signal-to-noise ratio allowing accurate sensing of weak
signals from living cells under test. Cell growth experiments
performed show adhesion and growth of mouse embryonic stem
cells on the surface of the sensing electrodes of the e-microplate.
Impedance mapping for Dulbecco’s phosphate buffered saline
solution performed with the e-microplate, for two different e-
microplate assemblies, confirms the functional accuracy of the
assembled systems.

Index Terms—3-D integration, biosensing, disposable, elec-
tronic microplate (e-microplate).

I. INTRODUCTION

MOS biosensors are increasingly being utilized for sens-

ing various modalities of cellular and molecular samples
including, but not limited to, electrical, magnetic, and optical
modalities at low cost. Sensing these modalities involves
correlating the cellular-based physiological events to change
in current or voltage that can then be sensed using integrated
electrodes [1]-[9]. A change in electrical response can be
induced by the administration of a stimulating chemical or
biological agent on electroactive samples (cardiac cells and
neurons), and any resulting changes in the sensed signal can
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then be studied to determine the drug efficacy or pathogen
mechanistic effects [7], [9].

These cell-based sensing techniques require the growth of
cells onto the biosensor’s surface; both the successful adhesion
and growth of these cells onto the biosensor are pivotal for
meaningful sensing and are strongly affected by the type
of material and the surface roughness [10]-[16]. Growth of
human cells on a multimodality CMOS biosensor has been
shown in [17]. However, growing cells directly onto the
biosensor is tedious due to the surface treatments required to
enhance biocompatibility and culture cells. Additionally, cul-
turing cells directly onto the CMOS biosensor may be expen-
sive because it is difficult to reuse as it must undergo a rigorous
cleansing process or disposed of to avoid contamina-
tion [7], [18]. Moreover, even after cleaning and sterilizing the
CMOS biosensor surface, the biosensor might not be suitable
for reuse if the cell type or the biochemical stimulus to be
tested are different. Contamination poses a perpetual risk to
the proper functionality of the CMOS biosensor. Furthermore,
any electrical connections to the board (e.g., wire bonds
in [17]) and culture medium sealing (e.g., polydimethylsilox-
ane (PDMS) sealing in [17]) need to be replaced for a new
sample during which there is a high likelihood of damaging the
CMOS biosensor and/or interconnects. To address these chal-
lenges, this paper presents a 3-D integrated disposable elec-
tronic microplate (e-microplate) platform allowing the reuse of
the CMOS biosensor and thereby reducing cost and increasing
throughput relative to systems that are nondisposable. The
platform utilizes mechanically flexible interconnects (MFIs)
and through-silicon-vias (TSVs) to electrically interface the
sensing electrodes on the CMOS biosensor to the sensing
electrodes on the e-microplate while maintaining a physical
separation of the biosensors from the cellular samples. Mouse
embryonic stem cell seeding experiment shows successful
cell attachment and growth on the sensing electrodes of
the e-microplate. The electrical characterization results show
that the integration of the e-microplate does not adversely
affect the performance of the underlying CMOS biosensor,
as seen via the consistency of the internal amplifier gain
and the input referred noise. Additionally, the e-microplate
system is shown to perform successful impedance mapping
on Dulbecco’s phosphate buffered saline (DPBS) solution. The
average measured resistance of the TSV-MFI link is 163 mQ,
while the measured 3-dB bandwidth and the integrated input
referred noise with the e-microplate included is 0.5-400 Hz
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Fig. 1. Envisioned microfabricated e-microplate platform—the e-microplate
can be replaced and the biosensor reused.

and 4.96 uVims, respectively. The low input noise ensures
high signal-to-noise ratio (SNR) for sensing minute biological
signals from the cellular samples, which is critical for reliable
analysis.

II. SYSTEM OVERVIEW

Fig. 1 shows the envisioned e-microplate platform. The
e-microplate serves as a 3-D integrated disposable tier separat-
ing the CMOS biosensor from the cultured cells. Mechanical
self-alignment structures and pyramid pits with submicrom-
eter alignment accuracy [18] have been incorporated into
this platform to enable low-cost and high-accuracy alignment
between the e-microplate and the CMOS biosensor. The gap
between the two tiers can be modulated by adjusting the size of
the pyramid pits and the self-alignment structures. Electrical
interconnections between the cultured cells and the sensing
electrodes on the CMOS biosensor are enabled using TSVs
and MFI integration. The flexible interconnects compensate for
any surface nonplanarity or minor gap variations between tiers
while maintaining good electrical connection. After perform-
ing required measurements on a cell culture, the e-microplate
can be replaced and the CMOS biosensor and board reused for
a new set of measurements. The CMOS biosensor presented
in [17] was utilized for the e-microplate assembly.

III. FABRICATION OF E-MICROPLATE

Fig. 2 shows the fabrication process of the e-microplate.
The sensing electrodes were fabricated on the top of the
e-microplate by the deposition of Ti/Cu/Au using an evap-
oration process, followed by a subsequent lift-off process.
After the formation of the sensing electrodes, gold passivated
NiW MFlIs, described in [19], were fabricated at the bot-
tom; utilizing NiW to fabricate the MFIs allows for larger
deformation within the elastic region owing to its higher
yield strength relative to copper [19]. The gold passiva-
tion using electroless plating ensures reliable gold-to-gold
contact between the MFI and the sensing electrode on the
CMOS biosensor. The surface profile of the sensing elec-
trodes for the fabricated e-microplate is shown in Fig. 3.
Surface variations and dishing are seen owing to the chemical-
mechanical polishing process. Key dimensions of the TSVs
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A. Via etching and meshing

B. Thermal oxidation for TSV liner

C. Via filling

D. Sensing electrode formation

E. Sacrificial dome formation

F. MFI electroplating

G. MFI releasing

H. Electroless gold passivation
Fig. 2. Fabrication flow of the e-microplate.
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Fig. 3. Sensing pixel group of e-microplate and its surface profile.

and MFIs fabricated for the e-microplate are summarized
in Table I. The layout of the e-microplate pixel group was
designed to complement the sensor pixel layout on the CMOS
biosensor, as described in [17]. Fig. 4 shows an X-ray and an
SEM image of the TSV-MFI integration. As seen from the
X-ray image, the fabricated TSVs are free of any voids
enabling reliable interconnections, which are crucial for the
accurate functionality of the platform. The SEM image shows
the fabricated MFIs in a pixel group at the bottom of the
e-microplate (facing the CMOS biosensor); each pixel group
consists of 16 MFIs, which make a contact with the corre-
sponding electrodes on the CMOS biosensor.

IV. CHARACTERIZATION
A. Mechanical Characterization of MFIs

Fig. 5 shows the mechanical compliance measurements
performed for the MFIs on the e-microplate using a nanoin-
dentor. The 30-um-tall MFIs regain their original height after
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TABLE I
DIMENSIONS OF THE FABRICATED MFIs AND TSVs

[T bimension | valus (um)
0

Diameter 5
TSVs Height 300
Pitch 100
Thickness 3.5
Vertical 30
MFis Height
Pitch 100

Sensing electrode

SV MFI

Fig. 4. SEM and X-ray images of the fabricated e-microplate pixel group.
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Fig. 5. Mechanical compliance measurements for fabricated MFIs.

up to 10 um of vertical displacement; this allows them to
compensate for minor surface profile or intertier gap variations
ensuring a good electrical interconnection to the electrodes
on the CMOS biosensor. The measured compliance for the
fabricated MFIs is ~ 15 mm/N.

B. Electrical Characterization of TSV-MFI Link

Four-point resistance measurement for the TSV-MFI link
was carried out by bonding e-microplate, as shown in Fig. 6.
The average resistance measured for the link was 163 mQ,
which included the contact resistance. The low value of
resistance, compared to the input impedance of the amplifier
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Fig. 6. Four-point resistance measurement results for the TSV-MFI link.

in the CMOS biosensor, ensures negligible signal degradation
from the living cells on the sensing electrodes to the biosensor.

C. Cell Growth

Cell growth experiments were carried out to verify the
viability of mouse stem cell growth on the e-microplate’s
surface. Attachment and growth of human pluripotent stem
cells on oxide surface with gold electrodes and TSVs have
been shown in [20].

For the D3 mouse embryonic stem cells growth experiment,
the sensing electrodes’ surface was first washed with methanol
followed by three washes with phosphate-buffered saline. The
surface was then gelatin-coated (0.1% gelatin) to promote
cell adhesion. The cells were trypsinized with 0.05% trypsin
to form a single-cell suspension and seeded at a density of
70 k cells/e-microplate in 400 uL of medium. The medium
was supplemented with leukemia inhibitory factor to maintain
cell pluripotency. Thereafter, the medium was changed every
two days, and cell growth monitored by examination with a
stereoscope. The results are shown in Table II.

As seen from Table II, the mouse stem cells adhere to
the sensing electrodes after 48 h of cell seeding. Subsequent
growth is observed after 96 and 144 h of cell seeding,
respectively. After the 144-h mark, cells are seen to cover the
majority of the sensing electrodes on both the surfaces. This
further warrants the utilization of e-microplates for cell-based
assays of varying types and makes the platform versatile and
adaptable.

D. Integrated System Characterization

A twofold system-level characterization was performed
for the assembled e-microplate system. First, the CMOS
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TABLE I

MOUSE EMBRYONIC STEM CELL GROWTH ON OXIDE AND
NITRIDE SURFACES WITH SENSING ELECTRODES

48 hours 96 hours 144 hours

Surface

Oxide

Nitride

Sensingeledmdes X
Wire-bonds

fortesting

Fig. 7. Test setup for gain and noise measurements—sensing electrodes were
wire-bonded to test board for measurements.

biosensor’s internal amplifier gain and input referred noise
were measured through the e-microplate’s TSV-MFI inter-
connections. Second, impedance mapping of DPBS solution
was performed to verify the functional accuracy of two
different assembled systems. Fig. 7 shows the assembled
e-microplate system used for internal amplifier gain and noise
measurements; the system includes the e-microplate, carrier,
and CMOS biosensor assembly mounted onto the test board.
For impedance mapping, a standard 35-mm Petri dish with
a drilled-out bottom was mounted onto the board and sealed
using PDMS to provide electrical isolation while maintaining
biocompatibility (Fig. 8). Fig. 9 shows the X-ray image of a
pixel group in the assembled platform; the MFIs are seen to be
well aligned to the sensing electrodes on the CMOS biosensor,
ensuring good electrical interconnection.

Fig. 10 shows the circuit schematic for the in-pixel
trimodality sensor. For the extracellular potential recording,
in-pixel op-amp, pseudoresistors, and capacitors C1 and C2
are configured as a high-pass inverting amplifier with a voltage
gain of C1/C2 and a low cutoff frequency of 1/27 RpseudoC2.
Note that the high cutoff frequency and the voltage gain
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Fig. 8. Test setup for impedance mapping.
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Fig. 9. X-ray image showing accurate alignment between e-microplate and
CMOS biosensor.
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Fig. 10. Schematic of internal voltage sensing amplifier and its connection
to the e-microplate’s pixel.

are fully programmable in signal conditioning block. For the
complex impedance measurement, two pixel electrodes (one
for the voltage excitation and the other for the current sensing)
are selected through the switch mux, and the generated voltage
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Fig. 11. Amplifier gain measurements—the amplifier gain remains
unchanged with the incorporation of the e-microplate.
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Fig. 12. Input referred noise measurements—Ilow input referred noise ensures
high SNR when measuring weak signals.

excitation signals bypass the in-pixel op-amp by enabling the
transmission gate switch S1 and are ac-coupled to the voltage
excitation electrode. The op-amp in the voltage excitation pixel
is switched OFF during the voltage excitation. The resulting
current flows through the capacitors C1 and C2 in the selected
current sensing pixel and is converted into the voltage at
the output of the amplifier. This voltage signal passes the
mixer, programmable low-pass filter, and programmable gain
amplifier to complete the complex impedance measurement.
The quadrature signals are sequentially applied to the mixer
for complex impedance measurement.

To test the effect of the e-microplate on the internal amplifier
gain and input referred noise, interconnections were made
by wire-bonding the sensing electrodes on the e-microplate
to the test board; this allowed the test signals to traverse
through the TSV-MFI link to the sensing electrode on the
CMOS biosensor. Fig. 11 shows the amplifier gain, measured
with and without the e-microplate. The results show that the
incorporation of the e-microplate does not affect the amplifier
gain; also, the 3-dB bandwidth remains unchanged. Similarly,
the input referred noise, shown in Fig. 12, does not degrade
with the incorporation of the e-microplate; the integrated input
referred noise of the amplifier, from 0.5 to 400 Hz, was
measured to be 4.96 1 V. This low input noise ensures high
SNR when measuring extremely weak biological signals from
living cells (e.g., cardiac cells or neurons), which is critical in
ensuring the integrity of the measured data.
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Fig. 13. Impedance measurement for air and DPBS measured via
e-microplate’s pixel group—measurements verify functional accuracy of the
platform.

Impedance mapping, using similar techniques as described
in [17], was performed for DPBS for two different
e-microplates and compared to air to verify the capability
and functional accuracy of the impedance mapping in the
e-microplate assembly. The results utilizing the high yield
pixels in the e-microplate, shown in Fig. 13, confirm
accurate assembly functionality for two different e-microplate
assemblies.

V. CONCLUSION

A low-cost, disposable platform using 3-D IC technology,
capable of providing electrical interconnections between living
cells and CMOS biosensors, is presented. The e-microplate
sits atop the CMOS biosensor circumventing the need for
direct cell growth on the CMOS biosensor surface, while the
TSV-MFI link provides the necessary electrical interconnec-
tions from the cells to the biosensor. The void-free TSVs and
the gold passivated NiW MFIs ensure reliable connections
to the pixel array on the biosensor, which are essential for
accurate sensing. Mouse embryonic stem cells are shown to
attach and grow on the sensing electrodes of the e-microplate,
warranting it suitable for cell-based assays. The integration
of the e-microplate does not degrade the CMOS biosensor’s
amplifier gain or input referred noise, hence ensuring accurate
sensing of weak biological signals from living cells cultured
on the e-microplate, which is critical for reliable data analysis.
Impedance maps generated for air and DPBS confirm the
functional accuracy of the developed platform.
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